VEE 4.0 Introduction Notes (mar 97)

last update 28 aug 98/ greg goebel / public domain /vwv_4 0

* This document provides introduction notes on the VEE 4.0 release in the spring of 1997.

* Contents:

[1] OVERVI EW

[2] PERFORMANCE | MPROVENMENTS

[3] NEW DEVELOPMENT ENVI RONVENT -- MENUS

[4] NEW DEVELOPMENT ENVI RONVENT -- MDI | NTERFACE, EXPLORER
[5] NEW DEVELOPMENT ENVI RONVENT -- FIND / PROFI LER

[6] NEW DEVELOPMENT ENVI RONMVENT -- DEBUGG NG & PRI NTI NG FEATURES
[7] NEW DEVELOPMENT ENVI RONMVENT -- M SCELLANEOUS CHANGES

[8] | NSTRUMENT MANAGER

[9] VEE LANGUAGE CHANGES: LOCAL VARI ABLES / NEW FORMULA BOX
[10] VEE OCX FOR OLE

[11] M SCELLANEOUS ENHANCEMENTS

[12] FINAL COWVMENTS & CAUTI ONS

[1] OVERVIEW

* HP VEE 4.0 is an important release that provides a jump in functionality greater than any other
previous version of VEE. Major new featuresin VEE 4.0 include:

No more VEE-RunOnly: Y ou can now create VEE programs and distribute them along with a
run-time DLL to as many users as you like with no further licensing requirements. The
distribution CD contains a subdirectory named "runtime" with four disk-image subdirectories
... you can copy these four subdirectories to four floppies to create your own run-time
distribution floppies.

Better performance: VEE has been internally redesigned to provide better performance than on
previous versions. Since this new internal organization has dightly different behavior than the
old scheme that could potentially cause anomalous operation of some old programs (Beta
testing has shown such problems to be minimal), a"compatibility mode" is available to allow
running such programs at their traditional speed.

New user interface: The VEE user interface has been almost completely redesigned to provide
amultiple-window scheme for handling the main program and subprograms independently. A
tree-oriented browsing system allows a user to select subprograms at will at any level of
nesting. A large number of other new editing and debugging features make program
development -- particularly of large programs.

Other tools include a Find utility to allow searching a program for a particular item; a Profiler
to allow examination of the execution load of various components of a program; a Call Stack
to track the execution of programs through UserFunctions; and an Instrument Manager that
consolidates all 1/0 configuration in a neat and consistent fashion.

Minor improvements include the consolidation of all math functions into a common dialogue;

better debugging facilities; wiring that changes color depending on the data type it handles;
object alignment tools; and many other small but convenient changes.

* Anassortment of bug fixes and other enhancements have also been provided ... important
changes include Local Variables; an enhanced Formula box that provides multiple outputs,
multiple comma-separated formulas, and the ability to assign value to array elements; new
system information functions to allow reading environment variables and so on; and afew
other minor functions.

Note that VEE's list price has been increased by about 25% to make up for unlimited Run-only
capability ... even with this, however, VEE is a better value than the competition.

Therest of this document explains the details of the new VEE improvements.

[2] PERFORMANCE IMPROVEMENTS

* VEE 4.0 provides substantial performance increases over VEE 3.2X by virtue of supporting
"compiled" operation ... which isn't necessarily what it sounds like: it doesn't mean that VEE now
creates a stand-alone executable program -- it means that the elements of the VEE program are
interpreted into an intermediate form ("p-code") that can be interpreted in afast fashion. Asfar as
stand-alone programs go, VEE 4.0 still requires arun-only environment (though you now get this for
free and can distribute it as you please).

This new "compiled" mode does come at a price, in that some operations that were allowed on VEE
3.2X are now forbidden and give you an error message (more on this below). However, VEE 4.0 dso
supportsa"VEE 3 Compatibility" mode to allow you to run old programs that have problemsin this
regard until they can be tweaked accordingly.

Having both compiled and compatibility mode does make it easier to demonstrate VEE 4.0's
improvements in performance, however ... consider the examples below:

F--- - - F--- - - +
| For Count | +--- - +
| 360 +--4->] sin +----- Sto---------- +
F-- - - F-- - - + | LI + | Collector +---->+----- +
| | B + | JCT + D +
| | +----- + +- >+ - - - - + | Collector
| +->| €cOS +--|-->+----------- + [- +
| +--- - + | Collector +--+
| B S + |
| | |
Fom e e e ee oo o m m e e e e e e eee e +
Fommma o +
| Start |
e
o m e e e e e e L ---------------------------- +

| [sin(ramp(360, 0, 359)) <cos(ranmp(360, 0, 359))] |

These two examples generate an array containing all the values of sine and cosine for each degree
from O to 360; they were originally devised to show the difference in VEE speed for iterative instead
of array operations, but they also serve well to show off VEE 4.0's performance. Experiments with
the two programs give the relative performance:

iterative array

conpatibility node: 1 22

conpi | ed node: 8 215

The figures are the increase in speed relative to the slowest operation (the iterative program under
compatibility mode). These figures indicate a roughly order-of-magnitude increase in performance of
these two sample programs.

Be warned that overall system performance isn't going to make ajump of this magnitude (don't
worry -- you won't hear anything about "V EE being faster than C!") when you factor in display and
filel/O ... you can likely expect an improvement in performance of about 3 or 4 times -- which
brings V EE applications up to a performance level comparable to those of any other applicationsin
the same domain on aPC.

In general, looping constructs and formulas will show the greatest speed increases; 1/0-bound
operations like file-1/0 or graphics will show the least.

* OK ... so what does compilation cost you? First, crossed loops don't work any more -- VEE 4.0
flags them as an error and won't run them. Second, any time you have feedback in a VVEE program or
function, you must do it through a junction box.

* VEE 4.0's compiled mode also offers one other important benefit: In VEE 3.2X, if you executed a
UserFunction, no other thread in VEE would execute in parallel with it ... that is, its operation was
"atomic". VEE 4.0 now alows such timeslicing (in compiled mode only).

This leads to arelated question: what happens if you call the same UserFunction in different threads
under VEE 4.0? In earlier versions of VEE, UserFunctions were not "reentrant”: you couldn't call a
UserFunction from the same UserFunction.

Under VEE 4.0, UserFunctions are still not reentrant. This means that if you call a UserFunctionin
one thread and then try to call it again from aparallel thread, the second call will "block™ (not
execute) until thefirst call is complete.

However, if you have parallel paths in the same program they will not operate in an aternating
fashion any longer.

[3] NEW DEVELOPMENT ENVIRONMENT -- MENUS

* A good way to start isto go through the menu selections and see what has changed.

* The"File" menu incorporates afew small changes:

» A "Save Secured Runtime Version” entry that allows you to save your VEE programin a
secured ".vxe" format that can be executed in runtime mode; this file will be saved separately
from the original file, ensuring you don't secure your source by mistake. The old " Secure”
entry isgone.

* Modificationsto the "Edit Default Preferences” dialogue box to select between
compiled/V EE-3-compatibility modes, spacing for object alignment in the devel opment
environment, and enhancements to print capability.

* The"Print All" entry has been changed to "Print Program”, with afew small enhancementsin
print options.

* Programs previously accessed by VEE now have their names queued up at the bottom of the
menu to allow them to be retrieved (a common feature in such contemporary applications as
Excel and the like, but new to VEE).

* The "Edit" menu has asimilar level of modifications;
e "Clone" isgone... "Copy" & "Paste" do the job just aswell.

» "Select Objects’ and "Move Objects’ are gone aswell; anew "Select All" and other features
replace this functionality.

* Thenew "Find" entry brings up a dialogue that allows you to search for program elements.

* VEE 4.0 adds anew "View" menu:

Vi ew Debug Flow

edemcccm e e e e e e e e _--.- +-
| Variables... | Display list of variables for exam nation.
| Last Error | Display last error nmessage that occurred.
o e e e e e e oo +
| Main Grl+M| Select main program panel in MJ interface.
| Execution Wndow |
o e e e e e e oo +
| *Program Explorer | Show hide Program Expl orer tree.
| Call Stack | Bring up UserFunction stack tracer.
| Profiler | Bring up program execution profiler.
o e e e e e e oo +
| *Tool bar | Show hide tool bar at top of environment.
| *Status Bar | Show hide status bar at bottom of environment.
o e e e e e e oo +

The "Debug" menu has been modified dightly:
* "Run" and "Resume" have become a single entry, "Run/Resume”.

* The"Step" entry has been expanded to "Step Into", "Step Over”, and " Step Out™ to support the
more flexible stepping capabilitiesin VEE 4.0. "Step Into" allows you to single-step through
each object in the program; " Step Over" allows you to skip over UserFunctions and
UserObjects while stepping through a program; and " Step Out Of" allows you to jump out of

stepping in a UserObject or UserFunction and return to the calling context.
* "View Globals" has been deleted (it is now essentially part of the "View" menu).

* Anentry for "Object Probe" allows you to determine what objects are wired to a specific
object.

The "Flow" menu remains the same. The "Device" menu has been modified slightly to reflect the fact
that the "Math" and "Advanced Math" menus have been deleted to support a much more convenient
way of handling functions:

* Themain change has been to add the "Formula" entry and a"Math & Functions' entry to bring
up adialogue box that allows access to all VEE functions (see below).

* "Regression” has been added and the random number functions eliminated from the menu.

» Cascade menusfor "Call" and "Panel" have been eliminated, with some functions
incorporated into the menu itself and others added to the "Math & Functions' dialogue.

The"Math & Functions' dialogue box provides a convenient way of consolidating all the earlier
clutter of the math operationsin VEE (aswell asintegrates handling of UserFunctionsin the
program):

T +
| Select Function [x]]
T +
Type Cat egory Name
o m e e e e e e e e - S B S TS +
Operators <Al I > concat
Built-in Functions Array init
Local User Functions Bessel pr oduct

I | | | | I
I | | | | I
I | | | | I
| I'nported User Functions | | Bitwi se | | rotate |
I | | | | I
I | | | | I
I || || I

Conpi |l ed Functi ons Cal cul us sort
Conpl ex Parts sum
Data Filtering tot Si ze

concat (X, y)

[Returns concatenated containers.]

Thisitem is available as the "fx" button on the Toolbar.

* The 1/O Menu deletes the separate VEE driver and Plug& Play Driver configuration entries and
uses the Instrument Manager instead (more on this later).

* The DataMenu isonly dlightly changed -- the "Globals' entry now becomes the "Variables' entry
(since VEE 4.0 now has Local Variables aswell), and the " System Information” functions are
incorporated into the Math& Functions dialogue.

* As noted, both the Math and Advanced Math menus have been deleted. The Displays menu

remains the same, as does Help ... but (to support the new multiple-window interface) a new
Window menu has been added:

W ndow Help

+
Cascade |
I
Tile Vertically |

I

I
| Tile Horizontally
I
I

Arrange | cons >
OO +
| Mnimze Al |
| Cose Al |
OO +
| 1 Main |
OO +

This should be familiar to anyone who used the similar menus on Win3 or Excel or whatever.

[4] NEW DEVELOPMENT ENVIRONMENT -- MDI
INTERFACE, EXPLORER

* The changes in the VEE 4.0 development environment are immediately visible; the new
environment looks like this:

o m e m e e e +
I HP VEE [0 10x] |
o m e m e e e +
| File Edit View Debug Flow Device |1/O Data Display Wndow Help |
o m e m e e e +
| [<iconic tool bar>]
o m e e e oo - o m e m e m e m e e e +
| <Program R +

Expl orer | * Main |

tree> e +

I I
I I
I I
| | I I
| | I I
| | I I
|| <vee progranp |

| | I I
| | I I
| | I I
| | I I
I I
I I
I I

The obvious changes are the "Program Explorer" tree at left (which looks something like Windows
Explorer but allows you to traverse through the functions and features of your VEE application rather
than files and directories), and the fact that the editing workspace itself appearsasa"Main" panel.

In VEE 4.0, all UserObjects and UserFunctions are now accessed as separate windows, using the
so-called "multiple document interface” (MDI) scheme; they can be "iconized" and will show up as

text icons at the bottom of the work area. The separate window scheme makes editing of
UserFunctions and UserObjects a much simpler operation.

Y ou can cycle between windows in the MDI user interface with the Ctrl+Tab key combination, and
cycle backwards with the Ctrl+Shift+Tab combination. The new "View" menu allows you to keep all
the windows and icons in the workspace organized -- allowing you to minimize or close them,
arrange the windows in atiled or cascaded fashion, or select one of the windows from the menu.
Note that when you save your program, the current state of the workspace -- that is, all the windows
and their positions -- is saved so it can be restored when you return to VEE.

If your program has a Panel View, when you run the program the Panel View will also appear asa
separate window -- the "Execution Window". This means that you no longer have separate VEE
operational modes ... it looks the same at runtime as it does during devel opment.

This meansthat if you don't want users to have access to the VEE development enviroment, you
must run the program in aVEE RunOnly mode. This actually doesn't require much effort; if you
perform a" Save Secured RunTime Version” on aprogram, it issaved asa".vxe" file; executing the
.vxe file from Windows Explorer will run it in its own execution-time window. (The .vxefileis
stored separately from the original .veefile, so as an added benefit you can't secure your source file
by mistake ... which is good because you can't get it back if you do.)

By default, installing VEE will set up an association between the VEE RunOnly bits and the .VXE
file extension, so simply selecting a.VXE file will run that program. This makes VVEE programs |ook
very much like executable programs when the computer is properly configured.

* Program Explorer allows you to access and probe the elements of the program in a structured
fashion; here's an example demonstrating the contents of Program Explorer in a sample application:

Y,
+- Main
+- Local User Functions

+- Set Local

I
I
I
| +- Local Var
I
I
I

+- Testvar
+- Inported User Function
I
| +- MyLib
I I
| +- Doubl el
| +- CetlLog
| +- Cet Root
I
+

This example shows "Main" (the core VEE program, which is a constant); User Functionsin the
programs and the variables associated with them; User Functions from User Libraries and their
variables; and Global variables associated with the entire program.

In general, the Program Explorer list the following resources in its tree, designated by distinct icons:

* TheVEE Main program (at the top of the tree).

* Loca UserFunctions.

» Imported UserFunction libraries and their constituent UserFunctions.

» Imported Compiled libraries and their constituent compiled functions.

» Imported Remote UserFunction libraries & their constituent UserFunctions.
e Declared and undeclared global variables.

* Local variables (under their appropriate context).

» Library variables (under their appropriate context).

Double-clicking on an entry in the Program Explorer brings the corresponding window into the
workspace (for a UserFunction or the like) or the value (for avariable). Clicking on the secondary
mouse button on an entry brings up a menu that allows you to examine the selection in more detail.

For a, say, UserFunction, you get amenu like:

| | Bring up window to inspect UserFunction.

| | Bring up Find panel to search through UserFunction.
| Print... | Print program docunentation.
| |

Docurent . . . Save program docunent ati on.
o a e +
| Generate Call | Create a Call Function box with UserFunction.
| Calls | Get a list of what the UserFunction calls.
| Called By | Get a list of what calls the UserFunction.
o a e +
| Cut | Renpve the UserFunction fromthe Explorer tree.
o a e +
| Description | Get Description box for UserFunction.
| Properties | Get Properties tabfolder for UserFunction.
o a e +

For avariable you get a simple menu:

edemcc e m e c e e e - +- -
| View | View value and type of variable.
| References | List programelenents that refer to the variable.

[5] NEW DEVELOPMENT ENVIRONMENT -- FIND /
PROFILER

* The new Find utility allows you to search for text items through the entire program and then jump
to the context in which it occurs; the utility has the appearance:

| Find [x]]
o m o o e e o eae oo +
| Find: [
| Search in: [Entire Program][Adv]
[R T T o e o e o e e e oo i oo - + |
| | Gener al | Advanced |
] R s + |
| | +- Show occurrences that -+ | [Find]
|| | || |
| | [1] Match case | <*> Contain search text | | [Stop]
| | [] Find all matches ... | < > Exactly match text | | |
| | [x] Search nested UserOhjects | < > Begin with text | | [Help]
|] | <> End with text |] |
| | Heoneee s + |
[R e i TR + |
o m o o e e o eae oo +
The"Advanced" menu for the Find allows you to constrain the search:
o mm e +
| Find [x]]
o mm e +
| Find: [
| Search in: [Entire Program][Adv]
| o o + |
| | | Advanced | |
| + I
		[Find]	
	Property Val ue		
_	[Stop]		
	Obj ect Type] [Al Types		
	[[Help]	
	1]		
I R e i + |
o mm e +

Y ou can specify three constraints on the search; click on one of the "Property" fields and you gt alist
of property types to perform the search with:

o m e e e e aaaa oo +
| Property Name [x]]
o m e e e e aaaa oo +
| Cbject Type N
| Breakpoi nt

| Context is secured |
| Description |
| Device nane |
| I'ndex number V|
o m e e e e aaaa oo +
| [K] [Cancel] |
o m e e e e aaaa oo +

There are far too many properties to examine here ... note that most of the properties have "Value"

fields, some of which are little more than "yes/no" flags or text-entry fields, but some are more
complicated -- such as that for "Object Type", which givesthe full list of objects that can be searched
for:

| [X] Accumul at or |
|[x] Al'locate Array |
| [X] Al phanuneric |
| [x] Beep |
| [x] Break |
[[x] Build Arb Waveform |
| [X] Build Conplex |
| [x] Build Record |
| [x] Build Spectrum |
oo o e e e e e e e e e e e e e eeem e +-
| [OK] [Cancel] [Select AlI] [Cear Al]

* The Profiler givesalist of User Objects and User Functionsin a program to allow you to get the
proportion of execution time spent in each:

o m e m e e +
| Profiler [x]]
o e o o e o S Fom e e e e oo o e e e e e e oo +
| Name | # Executions | % Time | Tine(sec) | |
R L R L R R L + [Start Profiling] |
U_Set Scal es	[Ref resh 1
Main	[d ear 1
Ulnit	
U dose	
U GetData	[Save 1
U Crunch	[Options...]
I | [Hel p 11
o m e o e e e e e e oo +

Note that this tool only works in Compiled mode, not in Compatibility mode. Y ou can sort the data
by categories and save it to afile; you select the category by clicking on the title above the data
column, and reverse the sort order on that field by clicking on it again.

[6] NEW DEVELOPMENT ENVIRONMENT --
DEBUGGING & PRINTING FEATURES

* VEE 4.0 provides alarge set of debugging enhancements, such asa"Show Last Error" menu entry;
Error boxes also alow you to directly bring up awindow giving the context in which the error
occurred, while the Error box remains up to give the details of the error.

A Call Stack window allows you to track the level of nesting in a UserFunction and trace the path
through which it occurred:

o m o e e e e e e e e e e e e aeaam o +
| ShowTopH ddenCar d(post) |
| makeAMove() |
| CheckMoves() |
| main() |
| |
| |
o m o e e e e e e e e e e e e aeaam o +
| [Cose] |
o m o e e e e e e e e e e e e aeaam o +

Note that this does not work if the program isinitiated with a Start button. Multiple stepping options
areaso available.

* If you select "Print Program™ from the File menu, you can perform a printout of the entire VEE
program ... with considerably more information than was available with VEE 3.X:

* A header sheet with general file information.

» A full listing of the Program Explorer tree.

* Main & UserObject/Function Views, referenced by grid coordinates and followed by a
referenced text detail list.

* Anindex (table of contents, basically) of the materialsin the printout.

[7] NEW DEVELOPMENT ENVIRONMENT --
MISCELLANEOUS CHANGES

* There are also anumber of small changesin the VEE programming environment.

First, now (in compiled mode) VEE assigns different colors to wiring depending on the data type
(and you can change the colors through the system Default-Preferences tab dialogue). The default
color assignments are as follows:

Blue: Numeric -- integer, real, or complex type.

Orange: String type

Gray: Nil value (usually from sequence-out pins).

Black: Structured types (like Records) or unknown types.

If the data on the lineis an array type, the line will be two pixels wide instead of 1. Ensuring that
specific datatypes flow through linesisimportant, since if VEE knows what data type will flow
through the lines the programs will run faster.

* Second, VEE 4.0 provides a nice pair of new features called "LineTips' and "TermTips"; if you
simply position the mouse cursor over awire, atiny window pops up to tell you what kind of data
thewire is carrying, and if you position the mouse cursor over apin on an iconized object, atiny
window pops up to give you the pin name.

* Third, Object Probe allows you to highlight all objects wired to an object by holding down the
Shift key and pressing the main mouse button; you can aso hold down Ctrl+Shift, then press on the
main mouse button to highlight objects connected to the output.

* Fourth, you can stretch or move objects and connect wiring outside the current context window.
Doing thisis alittle subtle ... for example, if you want to wire two objects together through a window
boundary, you click on the output pin of the first object to get a moving wire, then move the mouse
cursor to the edge of the window until the wire disappears.

Thismeansyou arein a"scroll region”; if you have trouble finding it, just watch the status bar at the
bottom of the VEE development environment and it will tell you when you arein a scroll region.
Then, after amomentary delay, the scroll will occur and you will be able to fix the wire on the
second object's input pin.

Similar comments apply to moving and stretching objects off-window. This technique takes alittle
practice to master.

* Fifth, you can connect an output pin to multiple input pins without having to click on the output
pin for each one; click on the output pin with the main mouse button and then let up to get a moving
wire, then use the secondary mouse button to connect it to an input pin. Y ou can keep on making
connections using the secondary mouse button as many times as you like; the moving wire won't go
away until you click on the primary mouse button again.

* Sixth, you can wire an input terminal back to an existing wire (nice feature).

* Seventh, you can clone objects by ssmply holding down the Control key and doing a
click-and-drag.

* Other improvements include the ability to align objects (to the right, left, top, bottom, or centered)
in the development environment; and cut, copy, or paste objects between different VEE programs,
using the standard Windows accelerator keys to perform these tasks.

[8] INSTRUMENT MANAGER

* The VEE 4.0 Instrument manager consolidates the various I/O configuration entriesin earlier
versions of VEE, providing a more convenient interface to Plug& Play Drivers, classic VEE drivers,
and Direct 1/0.

The Instrument Manager has a tree-structured format, somewhat similar to that of Program Explorer,
but divided up by interface.

o m e aa o +
| I'nstrunent Manager [x]]
o m e aa o +
| + Instrument List ----------------- +- Configuration -+ |
|| a ||
| | My Configuration | [Add 11 |
Il | [Del ete 11|
| | + GPIO12 | [Edi t 11 |
I B | [Refresh 11
1| + a2 | _ |
| | | +- CGet Device ------- + |
| | + HP-I1B7 | |]
I B | [Direct I/O0]| |
| 1 +- HP33120(@10) | [Plug&Play Driver] | |
| 1 +- HP34401(@22) | [Conponent Driver] | |
I I ||

[Panel Driver]

Device configuration for each device in the tree is much cleaner than before; for example, for an
RS-232 device you get the dialogue:

o m e e e e e e e e e e e e e +
| Devi ce Configuration |
o m e e e e e e e e e e e e e +
Nane: [34401]
Interface: [Serial V]
Address (eg 9) [9]
[

I

I

I

I

| Gateway:
I

| [Advanced 1/0O Config...]
I

I

I
I
I
I
This host] |
I
I
I
I

[OK T [Cancel 1] [Help]

settings:

o o oo +
| Advanced Devi ce Configuration [x]]
S S - oo +
| General | Seri al | Direct 1/O| Panel Driver |
| R R T +
I I
| Tinmeout (sec): [10 1 |
| Live Mode: [ON 1]
| Byte Ordering: [MSB] |
| Description (optional): [1 |
I I
I I
I I
I I
o o oo +
I [O][Cancel] [Help] I
o o oo +

-- gpecify seria parameters:

o m e +
| Advanced Devi ce Configuration [x]]
Fom e e e e oo Fomm e o Fomm e o o e o +
| General | Seri al | Direct 1/O| Panel Driver |
Fom e e e e oo + Fomm e o o e o +

I
| Baud Rate: [
| Character Size: [
| Stop Bits: [1
| Parity: [

Handshake: [DTR/DSR]
Recei ve Buffer Size: [4096]

o m e +
| Advanced Devi ce Configuration [x]]
Fom e e e e oo Fomm e o Fomm e o o e o +
| General | Seri al | Direct 1/O| Panel Driver |
Fom e e e e oo Fomm e o + o e o +
I I
| Read Term nator: ["\'n"] |
| Wite: |
| ECQL Sequence: [\n"] |
| Multi-Field as: [Data Only] |
| Array Separator: | .] |
| Array Format: [Linear] |
I I
I I
o m e +
I [O][Cancel] [Help] I
o m e +

o m o ee e aeaao o +
| Advanced Devi ce Configuration [x]]
Fom oo T T o ek +
| General | Seri al | Direct 1/O| Panel Driver

Fom oo T T +

I D Fil enane:
Sub Addr ess:

I

|

[hp3440l.cid] |

[| |

Error Checki ng: [ON 1 |
[1|

I

I

I

I

I
I
I
I
| I'ncremental Mode: ON
I
I
I
I

* The Instrument Manager also takes over the functions of the old separate Instrument Finder utility;
you just select the level in the tree you want to scan and click on the "Refresh™ button to do the scan.
At the top level the scan will confirm interfaces and scan HPIB and V XI for devices; you can select
an individual interface and do the scan to that as well.

All the instruments at the lowest level of the Instrument Manager are tagged by anicon ... when you
bring up VEE, the icon will be the front panel of an instrument -- but if you do a scan and the

instrument is recognized, theicon turnsinto a PC in front of the instrument front panel to
acknowledge the connection.

If the instrument has not been configured before, the entry for it in the tree will be of the form:

newDevi ce (@ 710)

-- and the instrument front-panel icon will have a"?' onit. If you then select that individual
instrument and do a"Refresh”, you get a dialogue of the form:

| |
| K to Send "*IDN?" to |
| newDevi ce (@ 710) ? |
| |

If the deviceis |IEEE 488.2 compatible (that is, it understands "*IDN?") and you click on the OK
button, then it goes out and identifies the instrument and changes the entry to:

newDevi ce (hp33120a @ 710)

Y ou can then edit the entry to change the device name if you like to, say:

fgen (hp33120a @ 710)

Once configured, a device stays configured, though if it is off or not present a scan will turn the icon
back to an instrument front panel. If you exit VEE and then reload it, all theicons will be back to
instrument front panels until you do a scan again.

[9] VEE LANGUAGE CHANGES: LOCAL VARIABLES/
NEW FORMULA BOX

* While the VEE language itself has not been greatly extended in VEE 4.0, there have been afew
useful enhancements.

* First, you can now declare variables to be global; local; or local to a UserFunction library. Thisis
done with the Declare Variable object:

o m e e e e e e ee e +
| Decl are Vari abl e |
o m e e e e e e ee e +
| Nane [gl obal 1 1 |
| Scope [dobal J[v] |
| Type: [Real][v] |
| Num Dinms: [0 10v] |

The fields are straightforward ... the "Scope” field can be selected as:

* Global.
* Loca To Context (which would be Main, a UserFunction, or UserObject).
e Loca To Library.

If you do not declare avariable, it defaults to Global. Local variables are "static”; they retain their
values between invocations of the UserFunctions that contain them.

* Second, the Formula box has been considerably enhanced: not only can you use array elements on
both sides of operations, but you can include multiple formulas in the same formula box and
(necessarily) set up multiple output pins.

oo o e e e e e e e e e e e e e eeem e +
| Formul a |
Fom oo + o e e e e e e e e e emem oo R +
| I'nteger A +----- > A | Result +-->
R + | [l C=A7], Al3,5 =1B[57 1| A +-->
+--> B | | B +-->
R + | | | C +-->
| Integer B +--+ 4---t---oomi oo AT +
Fom oo +

Y ou can set arrays, segments of arrays, record fields, and arrays of records with this scheme ...
though the data structures on both sides of the equation must match.

[10] VEE OCX FOR OLE

* The 3.2 version of VEE for Windows introduced remote procedure call (RPC) capabilities for VEE
... that i, the ability of one copy of VEE to invoke UserFunctions from alibrary loaded on another
copy of VEE operating on adifferent PC, linked over the Internet. An applications program interface
(API) was also designed to allow a C program to perform RPCsinto VEE UserFunctions on aremote
PC; thiswas known as "Callable VEE".

VEE 4.0 extends the VEE RPC technology by adding an OLE Custom Control, or OCX (that alows
you to access VEE UserFunctions from Visual BASIC, Excel, or any other OLE 2.0-compliant
application.

The OCX fileisinstalled with VEE and placed into your Windows system directory; it is named
"call.ocx”. If you want to install it on a PC that doesn't have VEE installed, you will need to install it
manually and check it into the Windows registry (details are provided with the online help file,
"call.hlp", which isinstaled in the main VEE installation directory).

The PC making use of the OCX must have a TCP/IP connection to the remote host where the VEE
running the RPCs will reside (this can be the same PC). The remote system must have VEE 3.2 or
above; if the remote system isa PC, it must also have the "veesm.exe" (VEE Service Manager)
application running out of the Windows Startup group (VEE on HP-UX will be automatically
configured for RPCs and does not use "veesm" as such).

In general, the OCX isincorporated into an OL E-compliant application (such as a program that is
written in Visual BASIC) and configured (either by the user or the program) to specify aremote

computer and various operational parameters; when initiated, the OCX goes out over the network to
run VEE on the remote computer, load a UserFunction library into that VEE, execute UserFunctions
with the parameters sent, and read back the results into the OCX and its host application.

* The specific operation of the OCX is easy to understand if you have ever programmed in Visual
BASIC; it isessentially ageneralized version of aVisual BASIC Custom Control (VBX ... OCX is
essentially the next-generation version of the older VBX technology), and like Visual BASIC
controls, provides avisual "widget" or "object” that includes:

» Properties: Essentialy control and status variables relevant to the appearance and operation of
the OCX.

* Methods: Essentially the command set of the OCX that cause it to execute the operations it
was designed to perform.

» Events: Essentiadly interrupts provided back to the calling application relevant to the
operations the OCX performs.

Other concerns are the values returned by the calls to the OCX (error codes and the like) and the data
types used with the remote VEE UserFunctions.

* The OCX has the visual appearance:

o m o o e e e o ee e e +
| Forml [0 T0x] |
o m o o e e e o ee e e +
| [Browser...] Functions Data Pin Information |
| R TSR i +
Library Path:	ufl	I'nput Name	nput Type	nput Shape Qut put Nare
[C\xlb.vee]	uf2	A doubl e any X		
	uf3			
Host Nane:				
I [hpl vwec] I I I				
[1 Debug				
R TSR i +				
Geonetry:	Desription Text:			
[]	Title: uf 2			
	Inputs:			
[Hel p 1] Narre Type Shape				
o aa - o m o o eeee—— oo +

The visual interface allows you to specify:

e The path to the library on the remote system.

e Thelnternet address of the remote system.

* A Debug flag to set single-stepping in functions on the remote system.

* Thewindow geometry (size and placement) of VEE on the remote system.
» A list box giving the UserFunctions in the remote library.

* Alist of data pin descriptions for the selected UserFunction.

The "Browse" button allows you to bring up a browser to locate the library on the remote system.

The properties associated with the OCX follow below. Examples are provided; note that "V ocx" is
an arbitrary name for an instance of the OCX, and the variable names ("VeeHost", "VeeGeometry",
and so on) are arbitrary as well.

Host Nane: Specifies renpte workstation.

Vocx. Host Nane = "hpl vewec"
VeeHost = Vocx. Host Nane

CGeonetrySpec: Specifies dimensions and placerment of renpote VEE wi ndow.

Vocx. Ceonet rySpec = "640x480+20+20"
VeeCeonetry = Vocx. Geonet r ySpec

TimeQut: Specifies tineout interval.

Vocx. Ti meQut = 60
VeeTi meout = Vocx. Ti mneQut

Debug: Sets debug node on the renpte system
Vocx. Debug = Set in debuggi ng node.

1
Vocx. Debug = 0 ' Set in debugging node.
DbMbde = Vocx. Debug

The most important methods associated with the OCX include follow below. Note that execpt for the
method names themselves, al the variable names ("RemLib", NLibs", and so on) are arbitrary:

LoadVeelLi brary: Specify library to | oad.

RenLi b = "\veelibs\xl b. vee"
Ret Code = Vocx. LoadVeelLi brary(Renlib)

Unl oadVeeli brary: Unload library fromrenote VEE.

RenLi b = "\veelibs\xl b. vee"
Ret Code = Vocx. Unl oadVeelLi brary(RenLib)

Cal | Function: Calls renmote User Functi on.

RermLi b = "\veel i bs\ x| b. vee"

RenfFn = "uf1"
Args(1l) = 42
Args(2) = 666
Ret Code = Vocx. LoadVeelLi brary(Renii b, Renfn, Args)

RetrieveFuncti onResults: Returns results of calling UserFunction.

RenLi b = "\veelibs\xI b. vee"
RenfFn = "uf 1"
Ret Code = Vocx. Retri eveFuncti onResults(Renli b, RenFn, FnResults)

There are alarge set of other methods, mostly intended to allow a program to interrogate the remote
VEE system and automatically determine what UserFunctions are resident in the remote VEE and
how they are configured. Very few users will be interested in this capability, and so you are referred
to the online help for more details.

Nunli brari es: Identify nunber of libraries | oaded on renote system

Nunfuncti ons: Get nunber of functions in renote library.

NumAr gunent s: Ret urns nunber of argunments (input pins) for function.
NunRet ur ns: Ret urns nunber of results (output pins) for function.
EnunmLoadedLi bs: Returns array of nanes of renote libraries.

Enunfuncti ons: Returns array of function nanes in renote |libraries.
EnumAr gunment s: Returns array of function argurment (input pin) nanes.
EnunRet ur ns: Returns array of function return (output pin) names.

NumAct ual Returns: Returns nunber of results froma function call.
EnunmRet ur nTypes: Provides data on type and shape of return data.
About Box: Tells the OCX to show its copyright dial ogue.

OCX events (and the values they return) include:

Host NameChanged: Occurs when OCX object HostNane field is changed.

Private Sub Vocx Host NaneChanged(ByVal NewHost Nanme As String)
" NewHost Nane gi ves new host name entered by user.
End Sub

Li braryAdded: Occurs when new library is specified on OCX object.

Private Sub Vocx_ LibraryAdded(ByVal NewlLi bNane As String)
" NewlLi bName gives new library nane entered by user.
End Sub

NewGeometry: COccurs when user changes geonetry field on OCX object.

Private Sub Vocx_ GCeonetryChanged(ByVal NewGeoretry As String)
" NewGeonetry gives new geonetry in string fornat.
End Sub

DebugChanged: COccurs when user changes Debug flag on OCX object.

Private Sub Vocx DebugChanged(ByVal NewDebugState As Bool ean)
" NewDebugState gives state of debug flag.
End Sub

Functi onSel ect ed: Cccurs when user sel ects new User Functi on from OCX.

Private Sub Vocx FunctionSel ected(ByVal LibraryPath As String,
ByVal FunctionNanme As String)

" LibraryPath gives path to VEE library.

" FunctionNane give nanme of function sel ected.

End Sub

RPCError: GQCccurs when RPC error occurs on RPC
Private Sub Vocx RPCError(ByVal ErrorNunber As |nteger,
ByVal ErrorString As String)

" ErrorNunber and ErrorString give information.
End Sub

* The OCX supports the following elementary data types:

* Long and short integers.
* Single and double-precision floating-point values.

OLE strings.
1-dimensional arrays of al the above.

VEE composite data types are mapped into the OCX data types as follows:

Coord: A 1-dimensional array of double-precision floating-point numbers.

Complex: A 1-dimensional array of two double-precision floating-point numbers, with the real
value asthefirst element and the imaginary value as the second element. Complex arrays are
1-dimensional arrays double-precision floating-point numbers with the same real/imaginary
alternating scheme.

Pcomplex: A 1-dimensional array of two double-precision floating-point numbers, with the
magnitude as the first element and the phase angle as the second element. Pcomplex arrays are
1-dimensional arrays of double-precision floating-point numbers with the same
magnitude/phase alternating scheme.

Waveform: A 1-dimensional array of double-precision floating-point numbers.

Spectrum: A polar complex array, as defined above.

[11] MISCELLANEOUS ENHANCEMENTS

* Other minor changes include:

Enum constants have an additional data output that returns the ordinal number of the choice
the user made.

The Knob and Slider objects have added small up-and-down arrows to provide high-resolution
(vernier) control inputs.

The Meter object has control inputs to control the sub-ranges.
Y ou can now use Direct 1/0 to read the status of DSR and CTS lines on RS-232.

Y ou can bring out a pin on Direct I/O objects to allow them to change their LAN address
(when using LAN 1/0O can't); you can also dynamically change the device namein aDIO
object.

Y ou can use the secondary mouse button to "zoom™ in on XY Displays objects.

Interface Operations now has an EXECUTE PASS CONTROL transaction to allow a program
to pass control; Interface Event now has an Active Controller event to allow the program to
know when control has been passed back.

There are three new system-information functions:

» getEnv(<environment_variable>): Read value of environment variable.
» getHostName(): Get network name of current host.
» installDir(): Get name of VEE install directory.

The VEE program source file format has been modified to ensure that it changes asllittle as

possible when additions are made.

Customers have long asked us to provide the ability to read the values of markers from XY
Trace objects, and for "normalized" FFT values; we were not able to build these
improvements into VEE 4.0, but there are new example programs that provide UserFunctions
to perform these tasks.

[12] FINAL COMMENTS & CAUTIONS

* Please remember the following items when dealing with VEE 4.0:

[<>]

The term "compiler" ismisleading ... VEE 4.0 does not generate executable code, it simply
compiles programsinto "p-codes"’ for faster execution.

Since VEE-Runonly now comes with the product along with an unlimited runtime license,
VEE'sinability to compile executable code should not be a serious sales obstacle.

Overdl performance will only be increased by afactor of 50% or so ... this makes it
competitive with other applicationsin itsfield.

The first time you run a program after it is brought into the VEE 4.0 environment, it will go
through a compilation phase, meaning that it will take a little longer to execute the first time
around.

Use of compiled mode to get better speed may lead to some minor upward-compatibility
problems ... program modifications may be required.

VEE 4.0 programs are not backward-compatible to older versions of VEE.

